• Quality Assured
  • See Contact Page for details
  • Free UK Delivery on orders 10kg/£80+
  • Quality Assured
  • See Contact Page for details
  • Free UK Delivery on orders 10kg/£80+

Micronutrients & The Mitochondria

The How & Why of the body's workings - "Fix the cell to get well."

The underlying cause of most chronic disease is the long-term deficiency of micronutrients.

Micronutrients comprise vitamins, minerals, trace elements, amino acids, phytochemicals (extracts from plants); all tiny molecules that have a distinct metabolic role in the cells of the body. Micronutrients are the foundation of any diet; if the body doesn't get these in plentiful supply, we're looking at cellular dysfunction that in time turns into a diseased organ and hence illness.

Without micronutrients, the body barely survives. We’re not so much looking at specific diseases but the key mechanism which unites them all – cells. Millions and millions of cells.

The How & Why Principal

To make any sense about how the body functions, especially when things are going wrong, we need to the physiology of the body, the How & Why, as in How stuff happens to the body and Why stuff happens to it.

The first step in understanding this is to have a bit of a handle on how the body normally works when it’s healthy, and what then happens when it isn't, when it’s placed under chronic stress or dis-eased (no longer at ease); essentially when it's changed from a state of balance to where part, or all, of the body is no longer functioning.

Yes there’s a bit of science involved here, but in kids-speak hopefully, because I am no science-geek, and when I had to learn this stuff as a medical herbalist I had to have it in a way I understood it until I got it. Bear with me, because this will all come together in the end.

So, first up, some quick terms - anatomy is the structure of the body, with physiology being how it all works, and pathology explaining what’s happening when it's all going wrong, i.e. the science behind the causes and effects of dis-ease. It's all well and good saying 'my horse is stressed/depressed/shut down/whatever', but trust me when I say no pill is going to fix it. As the saying goes, we have to go much deeper and 'fix the cell to get well.'

With understand the how and the why of what's gone wrong at cellular level, so we can fix it, reboot everything and get the body healthy again.

So here we go. There are several levels of structural organisation in the organism (body) and they're all connected so let's start at the bottom:

  • The chemical level
    This is where it all begins - we're talking molecules and chemical atoms, and these are essential for maintaining life. Horse or human, we’re one big lump of chemistry! We’re talking gazillions of incredible chemical reactions happening all the time. Think magnesium, calcium, copper, zinc, iron ... the list goes on, and we have to have the right chemicals in the right ratios to each other to make sure we work properly.
  • Next, the cellular level - the Mitochondria and the importance of 'Fix the Cell to Get Well'
    Cells are the basic structural and functional units of the body, and there are bazillions of multi-billion-trillions of them, i.e. blood cells, nerve cells, muscle cells etc. This is where everything starts to happen, or, for that matter, stops happening. and here's why.

    Bit science-y, but worth it, because here's where we discover the mitochondria, which are incredible and we all need to know about them so here goes. Every cell in the body has a nucleus in which energy is generated from amino acids, carbohydrates and oxygen, with the aid of enzymes (technical term cell respiration) - this generated energy is what makes the cell do its thing, as in do what it's programmed to do.

    And what generates this energy inside the cell's nucleus? A microscopic-sized engine called a mitochondria, which sit inside each and every cell in the body - literally every single function the body doperforms es is because the mitochondria have converted (burned) a chemical/nutrient to create an energetic instruction for the cell to perform its job. The mitochondria are the body’s incredible power plants and it's where all the action happens.

    Imagine a fire, burning fuel to generate an 'energy', as in a function, i.e. heat. The mitochondria are the same, tiny furnaces inside each cell burning 'fuel' (those chemicals in the chemical level) to create an energy, like a steam train’s coal furnace burning white hot to create steam to propel the train. Those chemicals enter the cell, hop into the mitochondria (the furnace) and get ‘burned’ to provide the energy for perform the cell's function.

    Put simply, the mitochondria are the key energy sources for every body out there, whether human or horse. They’re tiny factories housed within every cell that takes the nutrients from the fuel (food) and oxygen from breath and converts them into energy. That energy is called ATP - adenosine triphosphate - and it’s used to support every function in our bodies.

    Each cell holds thousands of mitochondria; they’re found in greater concentrations in active organs and tissues like the heart, brain and muscles. In human terms, we have more than 100,000-trillion mitochondria in our bodies, and each one contains at least 17,000 mini-assembly lines for making ATP.

    Mitochondria are basically where metabolism happens. So, when the mitochondria aren’t working properly, metabolism runs less efficiently and can even shut down. Problems occur because these powerful energy producers are incredibly sensitive and easily damaged, and when this happens we’re talking low energy, fatigue, memory loss, pain, rapid aging, and more. Fatigue is the most common symptom of poorly functioning mitochondria, and tends to be the main reason we all feel more tired as we age. So, making sure the mitochondria are functioning properly is crucially important.

    Here's an example. Muscle cells need calcium to provide the energy burst, to make the cell explode into action, but then need magnesium to pull the spent calcium back out of the cell, so the cell can de-contract, take a breath and get ready for the next burst of energy via the next shot of calcium. So, calcium and magnesium must work together in the correct, balanced ratios to each other, for healthy muscle cellular exchange.

    The mitochondria work round the clock throughout the entire lifetime of the organism, but they depend on a supply of raw materials - chemicals and nutrients. And ... they're vulnerable. Free radicals are constantly seeking them out to destroy them; inappropriate foods starve them; environmental toxins and stressors overburden them, making their operation sluggish and even damaging them. The body can rally itself from its own resources for a while, but if cell respiration rapidly declines, the body’s natural defenses dwindle. Cue fatigue and reduced performance, and eventually the stress cycle begins.
  • Next, we have the tissue level
    When certain cells join together they form a tissue which makes up organs and other body parts. There are four main types of tissue: muscle, epithelial, connective and nervous. Each is made of specialised cells that are grouped together according to structure and function. i.e. epithelium tissue lines the stomach. Each cell in the tissue has a specific function, i.e. mucous cells produce mucous to line the stomach wall to lubricate it for both the smooth passing of food and to protect it from damage; parietal cells produce stomach acid, and so on.
  • Now we get to the organ level
    This is where specific tissues join together to form an organ, which is a structure composed of two or more different tissues having specific functions and usually recognisable shapes, i.e. heart, liver, lungs, brain and stomach. Certain organs form part of a system, which leads us to ...
  • System level
    The association of organs that have a common function, i.e. the digestive system, which has the job of breaking down and absorbing nutrients for the body from food. The digestive system isn’t just the GI tract and the gut - its organ-association is multi-fold, starting with the mouth, salivary glands, the pharynx, oesophagus, stomach, liver and pancreas, small intestine, cecum, large intestine, colon, rectum and anus. Phew! All combined together to form a system.
  • Finally, the organismic level
    This is all the parts of the body functioning together with one another, making up the whole organism, as in a living individual, as in a horse - and human too. Pretty darned clever if you ask me.

Ultimately, the computer inside the organism seeks to maintain a healthy balanced state, aka homeostasis (homeo – same, stasis – standing still), at all times. Homeostasis is where the body’s internal environment remains in balance within certain physiological limits, and this relies on specific fluids, both inside and outside the body’s cells.

The body’s cells can only survive if their personal ‘fluids’ are precisely maintained - you may have heard of words such as intracellular fluid, which is the fluid inside the cells, and extracellular fluids – yep, kind of obvious I know – that’s the fluid surrounding the cells. You’ve probably also heard of plasma, which many people think is another word for blood; it’s not, but it’s close – it’s the name for the extracellular fluid surrounding the blood cells.

So, back to the extracellular fluid – stay with me as this is important stuff, and I promise we’re nearly done on the biology lesson. All the body’s cells are surrounded by an extracellular environment, and for this reason, extracellular fluid is generally called the body’s internal environment. It’s constantly on the move, and contains gases, nutrients and electrically charged particles called ions, all needed for maintenance of life itself. And every part of every organism structure, from chemical to cellular to tissue to system level, contributes in some way to keeping this internal environment within normal limits.

Biology lesson over! To finish, an organism is said to be in homeostasis when its internal environment:

  • contains the optimum concentration of gases, nutrients, ions and water,
  • has an optimal temperature,
  • has an optimal pressure for the health of the cells.

Simples! You’d think ... because ... when homeostasis is disturbed, ill health results. And if those body fluids are not eventually brought back into homeostasis, we’re talking the Grim Reaper. So, maintaining homeostasis is really, really important, because when one or more components of the body lose their ability to contribute to homeostasis, the normal body processes start heading towards dysfunction.

By the time a horse reaches the loss of appetite/loss of condition stage, we're in trouble at system level – it's gone that high from the internal environment at cellular level. The digestive system is now homeostatically unbalanced, which means it’s not functioning as it should, aka it’s stressed. And thanks to the biology lesson, we know that 'stress' is a term for when 'a stimulus creates an imbalance in the internal environment on the body’s systemic functionality'. In other words, the body is seriously out of kilter, and it's all about what's going on at cellular level.

Cells are interconnected by a tissue ‘matrix’; this is the area in between the cells where the micronutrients go and from where they enter into the cells and things happen. The cellular waste from the cells also goes into this area, and the lymphatic system, the body’s drainage system, takes the waste away.

This matrix has to be clean. If it's contaminated then oxygen won’t be able to go through into the cells and they become damaged. Appropriate nutrients won’t get into the cells such as the minerals magnesium and potassium so the cell becomes acidic. This is why regular detoxing is so important.

Cells migrate throughout the body constantly, and all the cellular processes, under normal circumstances, are tightly controlled. The white blood cells are part of the cellular army, the immune system cells that are involved in protecting the body and fighting disease. Trouble is, diseased cells migrate throughout the body as well, first in their own environment then ultimately into other organs. Think of an expedition group in the jungle, hacking their way through the undergrowth to discover new, untouched territories.

Healthy cells have a natural lifespan – they live, they die, then recycle themselves. However, those diseased cells are not only growing but they’re not dying, and they continue to invade. So how do we stop this happening? With a healthy micronutrient synergy, this effectively inhibits the growth and invasion of these mutant cells. This happens directly at the core of the mutant cell, challenging the inner sanctum of the cell via a forced biological interception, almost saying, ‘either you function properly, or you die.' This process is called Apoptosis.

Time for some science-y words - 'Apoptosis' & 'Epigenetic'

Apoptosis is a process which regulates the natural program of normal cell death, not only the natural cell life program but also the lives of the bacterial and viral cells which cause disease, and the free radical cells which by their act of mutation have become immortal.

The Apoptopic Switch is a signal, an intelligent wisdom in cells, which tells them they’re not healthy and they should die and recycle themselves. Botanicals and phytochemicals can turn the Apoptopic Switch back on - every pigment in fruit and vegetables enters the nucleus of the cell and interacts with the body's genes, and those natural plant chemicals are powerful enough to turn on the Apoptopic switch. Pretty cool, I reckon ...

Now to Epigenetic, which is the study of changes in organisms caused by modification of gene expression rather than alteration of the genetic code itself. I know that's a mouthful of brain freeze, but put another way, lifestyle choices influence everything, including gene expression.

If the body is sick, it’s likely to be because of an underlying state - it might be stress, and certainly there are genetic predispositions. What we’ve learned though, is that we can change the diet to a more nutritional species-appropriate one, enough to override the genetic propensity, and through epigenetics realign them in a healthy fashion and start again. The body isn’t inevitably programmed to the parental genetics; through care and attention to diet, the body’s fuel, the epigenetic code can be influenced.

Pulling all this together, the great news is that nature provides us with the whole spectrum of nutrients to keep the body healthy via its own bio-intelligence, and antioxidants are one of these amazing nutrients. So now let's swat up on Nature's Farmacy, Antioxidants & The Environment and how together, they all helps support the whole system.